Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Polymorphism in bipodal $\mathrm{O}, \mathrm{O}^{\prime}$-dimethyl N, N^{\prime}-(m-phenylenedicarbonyl)bis(thiocarbamate)

Gavin Blewett, Martin W. Bredenkamp and Klaus R. Koch*

Department of Chemistry, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
Correspondence e-mail: krk@sun.ac.za

Received 18 May 2005
Accepted 10 June 2005
Online 30 June 2005
The title compound, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$, crystallizes in white and yellow polymeric forms as a result of interesting anti-anti and syn-anti conformational isomerism of the thiocarbonyl and carbonyl moieties relative to one another. This work is the first reported X-ray crystallographic structure determination of isomers of this class of bipodal ligand. The white form, antianti, (I), crystallizes with the benzene ring lying about a twofold rotation axis, resulting in both of the thiocarbonyl and carbonyl moieties being anti relative to each other. The yellow modification crystallizes as syn-anti, (II), with one thiocarbonyl moiety syn and the other anti relative to the respective carbonyl groups. The individual molecules of both (I) and (II) are extensively linked through intermolecular hydrogen bonds. Intermolecular hydrogen bonding in (II) includes a network of bifurcated $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds, while molecules of (I) include bifurcated $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Substituted acylthioureas with the general motif $R \mathrm{C}(\mathrm{O}) \mathrm{NH}-$ $\mathrm{C}(\mathrm{S}) \mathrm{N}\left(R^{\prime}\right)_{2}$ have been studied extensively as a result of their coordination chemistry, particularly with the softer transition metal ions (Hoyer et al., 1986; Köhler et al., 1986; König et al., 1983, 1986; Richter et al., 1989; Schröder et al., 2000). We have extensively studied these molecules and their bipodal analogues, $\left(R^{\prime}\right)_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NHC}(\mathrm{O}) R \mathrm{C}(\mathrm{O}) \mathrm{NHC}(\mathrm{S}) \mathrm{N}\left(R^{\prime}\right)_{2}$, as part of an investigation examining their potential uses in the platinum group metal industry (Bourne et al., 2005; Hallale et al., 2005; Koch, 2001; Koch et al., 1999).

Despite the several reported applications of these acylthiourea derivatives, there are few structural reports concerning the uncoordinated substituted thiourea derivatives (Bourne et al., 2005; Koch, 2001; Koch, Sacht \& Bourne, 1995; Koch, Sacht, Grimmbacher \& Bourne, 1995; Ramadas et al., 1993; Ugur et al., 2003). Recent work in our laboratory, however, has shown that these molecules show some inter-
esting inter- and intramolecular hydrogen-bonding interactions in the solid state (Bourne et al., 2005). In this context, we have become interested in the synthesis and potential coordination chemistry of the structurally related O-alkyl N-benzoylthiocarbamates, which, to our knowledge, have received very little attention in the literature.

O-Alkylthiocarbamic acid esters have previously been reported as having potential as 'collectors' in ore flotation (Azizyan \& Ryaboi, 1989; Konev \& Ryaboi, 1971), and have also been proposed as being the intermediates for the regioand chemoselective deoxygenation of primary and secondary aliphatic alcohols (Oba \& Nishiyama, 1994). To date, the only crystal structures of uncoordinated molecules similar to the title compound that have been reported in the literature are those of O -isopropyl N -(2-furoyl)thiocarbamate (Morales et al., 2000b), O-benzyl N-(2-furoyl)thiocarbamate (MontielOrtega et al., 2004) and a recently reported bipodal thiocarbamic ester, O, O^{\prime}-diethyl N, N^{\prime}-(p-phenylenedicarbonyl)bis(thiocarbamate) (Blewett et al., 2004).

(I)

(II)

We report here the molecular structures of a white, (I), and a yellow, (II), polymorph of O, O^{\prime}-dimethyl N, N^{\prime}-(m-phenylenedicarbonyl)dithiocarbamate, which differ only by the relative orientation of the thiocarbonyl moiety with respect to the aminocarbonyl groups. In (I), the orientations of both thiocarbamate O-ester groups are anti with respect to the aminocarbonyl moiety (Fig. 1), while in (II), one orientation is anti and the other is syn (Fig. 2).

In (I), both the thiocarbonyl and carbonyl moieties within the asymmetric unit of (I) are anti relative to one another, the complete molecule being generated by a twofold rotation axis passing through atoms C 5 and C 7 of the benzene ring (Fig. 1).

Figure 1
The molecular structure of (I), showing the atomic numbering scheme and 50% probability displacement ellipsoids. A twofold rotation axis passes through atoms C5 and C7. [Symmetry code: (i) $-x, y, \frac{1}{2}-z$.]

The asymmetric unit of (II) (Fig. 2) consists of a complete molecule and, in contrast to (I), does not contain internal symmetry. The relative orientations of the thiocarbonyl and carbonyl moieties, S 1 and O 2 , are syn with respect to each other, while atoms O3 and S2 are anti relative to one another. The approximate anti orientation of the S and O atoms within the $\mathrm{C}(\mathrm{S}) \mathrm{NHC}(\mathrm{O})$ moieties of (I), and of atoms O3 and S 2 in (II), is frequently observed in the closely related bipodal $N^{\prime}, N^{\prime}, N^{\prime \prime \prime}, N^{\prime \prime \prime}$-tetraalkyl- $N, N^{\prime \prime}$-aroylbis(thioureas) (Koch et al., 2001; Ugur et al., 2003). This anti orientation of the S and O atoms is also frequently observed in the monopodal N -aroyl-N^{\prime}-alkyl- and N-aroyl- N^{\prime}, N^{\prime}-dialkylthioureas (Koch, Sacht, Grimmbacher \& Bourne, 1995; Morales et al., 1997, 2000a; Shanmuga Sundara Raj et al., 1999). The comparable uncommon syn orientation of the thiocarbonyl and carbonyl moieties (S1 and O2) observed in (II) was also observed in the structurally related O, O^{\prime}-dimethyl N, N^{\prime}-(p-phenylenedicarbonyl)bis(thiocarbamate) (Blewett et al., 2004).

The anti-anti and syn-anti conformations of (I) and (II) have a significant effect on their molecular packing. The antianti conformation in (I) results in intermolecular $\mathrm{N} 1-$ $\mathrm{H} 1 \cdots \mathrm{O} 2$ hydrogen bonds as well as bifurcated $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 2$ hydrogen bonds between adjacent molecules, causing molecules of (I) to pack in chains parallel to the c axis. Further distinctive intermolecular $\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{~S} 1$ hydrogen-bond interactions cause these chains of molecules to extend as sheets parallel to (100) (Fig. 3 and Table 2).

In yellow polymorph (II), the syn-anti conformation results in these molecules packing with a network of bifurcated intermolecular $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 3, \mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 3$, $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 2$ and $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{~S} 1$ hydrogen bonds to adjacent molecules. As a result, each molecule of (II) interacts with two adjacent molecules via a series of hydrogen-bond interactions, producing one-dimensional molecular chains parallel to [010] (Fig. 4 and Table 4). Crystallization and polymorphism are complex phenomena and an appreciation of polymorphism is fundamental to an understanding of the crystallization process itself (Desiraju, 1997). It has been suggested that our understanding of polymorphism is, however, still far from complete and the occurrence of polymorphism cannot be safely predicted

Figure 2
The molecular structure (II), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50\% probability level.
(Kirchner et al., 2004). In many cases in the literature, the pattern of hydrogen bonds formed within a molecule studied is said to constitute the basis for polymorphism within those molecules (Kirchner et al., 2004). It is possible that the hydrogen bonding observed in (I) and (II) contributes to the occurrence of the polymorphism observed. However, the overall packing of the molecules of (I) and (II) is undoubtedly dictated by a collection of subtleties, only some of which are the hydrogen-bond interactions reported.

The C2-N1 bonds in both (I) and (II), as well as C11-N2 in (II), are all shorter than the corresponding bonds in the bipodal compound $3,3,3^{\prime}, 3^{\prime}$-tetraethyl-1, 1^{\prime}-terephthaloylbis(thiourea) [1.4173 (16) \AA; Ugur et al., 2003] and in $3,3,3^{\prime}, 3^{\prime}-$ tetraethyl-1, 1^{\prime}-isophthaloylbis(thiourea) [1.428 (4) Å; Koch et al., 2001]. This fact indicates a greater degree of double-bond character in the $\mathrm{C}-\mathrm{N}$ bonds in question in (I) and (II). Correspondingly, the C3-N1 bond length of (I) and C10-N2 of (II) are somewhat longer than the corresponding $\mathrm{C}-\mathrm{N}$ bond length for 3,3,3', 3^{\prime}-tetraethyl-1, 1^{\prime}-terephthaloylbis(thiourea) $[1.3606$ (17) \AA]. The C3-N1 bond in (II) is significantly

Figure 3

A view of the structure of (I), showing the intermolecular $\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{~S} 1^{\mathrm{i}}$, $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 2^{\mathrm{ii}}, \quad \mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 2^{\mathrm{iii}}$ and $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{ii}}$ hydrogen-bond interactions. All H atoms, apart from those participating in hydrogen bonding, have been omitted for clarity. [Symmetry codes: (i) $x, y+1, z$; (ii) $x,-y+1, z-\frac{1}{2}$; (iii) $-x,-y+1,-z+1$.]

Figure 4

A view of the structure of (II), showing the intermolecular $\mathrm{N} 1-$ $\mathrm{H} 1 \cdots \mathrm{O} 3^{\text {iv }}, \mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{~S} 1^{\mathrm{v}}, \mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 2^{\mathrm{v}}$ and $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 3^{\text {iv }}$ hydrogenbond interactions. All H atoms, apart from those participating in hydrogen bonding, have been omitted for clarity. [Symmetry codes: (iv) $-x,-y,-z+2 ;(\mathrm{v})-x+1,-y+1,-z+2$.]
longer than the comparable $\mathrm{C}-\mathrm{N}$ bonds in both $3,3,3^{\prime}, 3^{\prime}-$ tetraethyl-1, 1^{\prime}-terephthaloylbis(thiourea) [1.3606 (17) Å] and 3,3,3', 3^{\prime}-tetraethyl-1, 1^{\prime}-isophthaloylbis(thiourea) [1.381 (4) Å].

The conformations of the $\mathrm{C}(\mathrm{O}) \mathrm{NHC}(\mathrm{S}) \mathrm{OCH}_{3}$ branches of (I) are remarkably planar, with atom O1 deviating from the $\mathrm{C} 4 / \mathrm{C} 3 / \mathrm{N} 1 / \mathrm{C} 2 / \mathrm{O} 1 / \mathrm{C} 1$ least-squares plane by only 0.070 (2) A . Atoms O2 and S1 lie out of this plane by only -0.118 (3) and -0.291 (3) \AA, respectively, in contrast to the situation observed for $3,3,3^{\prime}, 3^{\prime}$-tetraethyl-1, 1^{\prime}-terephthaloylbis(thiourea) and $3,3,3^{\prime}, 3^{\prime}$-tetraethyl-1, 1^{\prime}-isophthaloylbis(thiourea). The anti coplanarity of S 1 and O 2 in (I) is further illustrated by the torsion angles listed in Table 1. In (I), the C4/C3/N1/C2/ O1/C1 plane intersects the plane of the phenylene ring at an angle of $25.50(9)^{\circ}$.

Both $\mathrm{C}(\mathrm{O}) \mathrm{NHC}(\mathrm{S}) \mathrm{OCH}_{3}$ branches of (II) are also remarkably planar. For the syn branch of (II), atom C4 deviates from the $\mathrm{C} 4 / \mathrm{C} 3 / \mathrm{N} 1 / \mathrm{C} 2 / \mathrm{O} 1 / \mathrm{C} 1$ least-squares plane by only 0.060 (2) \AA, while atoms O 2 and S 1 deviate from this plane by -0.085 (7) and 0.185 (8) \AA, respectively. The syn coplanarity of atoms S 1 and O 2 in (II) is further illustrated by the torsion angles listed in Table 3. The C4/C3/N1/C2/O1/C1 plane intersects the plane of the phenylene ring at an angle of 16.5 (3) ${ }^{\circ}$. Similarly, atoms C10, O3 and S2 deviate from the C9/ $\mathrm{C} 10 / \mathrm{N} 2 / \mathrm{C} 11 / \mathrm{O} 4 / \mathrm{C} 12$ least-squares plane of the anti $\mathrm{C}(\mathrm{O}) \mathrm{NHC}(\mathrm{S}) \mathrm{OCH}_{3}$ branch of (II) by only 0.147 (3), 0.458 (5) and 0.230 (6) \AA, respectively. The anti coplanarity of atoms S2 and O 3 in (II) is further illustrated by the torsion angles listed in Table 3.

The asymmetry of the $\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$ and $\mathrm{C} 6-\mathrm{C} 4-\mathrm{C} 3$ bond angles (Table 1) in (I) may be the result of a repulsion in the $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{H} 5-\mathrm{C} 5$ system and an attraction in the C6H6 $\cdots \mathrm{O} 2$ system. Similar observations pertain to (II), with an asymmetry in the $\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$ and $\mathrm{C} 6-\mathrm{C} 4-\mathrm{C} 3$ angles (Table 3) due to a possible repulsion in the $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{H} 5-\mathrm{C} 5$ system and an attraction between the $\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 2$ system. For the anti branch in (II), qualitatively similar interactions may be inferred from the asymmetry between the C5-C9C 10 and $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$ angles (Table 3), possibly as a result of repulsive interactions in the $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{H} 8-\mathrm{C} 8$ system and attractive interactions in the $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 3$ system. Similar observations have been made for O -isopropyl N -(2-furoyl)thiocarbamate (Morales et al., 2000b) and bipodal O, O^{\prime} dimethyl $\quad N, N^{\prime}$-(p-phenylenedicarbonyl)bis(thiocarbamate) (Blewett et al., 2004).

Experimental

All syntheses were carried out under a dry argon atmosphere using standard Schlenk and vacuum-line techniques. Compounds (I) and (II) were synthesized using a modification of a procedure initially reported for the preparation of substituted thioureas (Douglas \& Dains, 1934). The reagents isophthaloyl dichloride and KSCN were used as supplied without further purification. Acetone (calcium carbonate) and methanol ($\mathrm{Mg}, \mathrm{I}_{2}$) were rendered anhydrous and distilled prior to use. Isophthaloyl dichloride (2.5 mmol) in acetone (25 ml) was added to KSCN $(5 \mathrm{mmol})$ in acetone (25 ml) under an inert atmosphere. The mixture was heated under reflux for 1 h and then cooled to room temperature, after which ethanol (5 mmol) in
acetone (25 ml) was added dropwise with stirring and the mixture further warmed to 333 K for 2 h . Water (50 ml) was added, followed by extraction of the product into chloroform. Removal of the solvent in vacuo yielded the crude pale-yellow amorphous target product. The product was further purified by crystallization from a 1:1 mixture of chloroform and ethanol, yielding simultaneously both white and yellow crystals from the same sample batch suitable for single-crystal diffraction analysis [overall yield 81.3% (based on isophthaloyl dichloride)]. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 10.30(b r, s, 2 \mathrm{H}), 8.62(s, 1 \mathrm{H}, \mathrm{Ph})$, $8.13(d, 1 \mathrm{H}, \mathrm{Ph}), 8.11(d, 1 \mathrm{H}, \mathrm{Ph}), 7.56(t r, 1 \mathrm{H}, \mathrm{Ph}), 3.96(s, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 190.6(\mathrm{CS}), 170.1(\mathrm{CO}), 134.1(\mathrm{Ph}), 134.0$ (ipso- Ph), $130.4(\mathrm{Ph}), 127.3(\mathrm{Ph}), 68.4\left(\mathrm{CH}_{3}\right)$. FT-IR (KBr disks), for (I): $3265(s), 1686(s), 1529(s), 1282(s) \mathrm{cm}^{-1}$; for (II): $3299(s), 1688$ (s), $1520(s), 1272(s) \mathrm{cm}^{-1}$.

Polymorph (I)

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$
$M_{r}=312.36$
Monoclinic, $C 2 / c$
$D_{x}=1.512 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$a=19.336$ (3) A
$b=8.2864$ (13) A
$c=8.6590(14) \AA$
$\beta=98.435(3)^{\circ}$
$V=1372.4$ (4) \AA^{3}
$Z=4$
Cell parameters from 1347
reflections
$\theta=2.1-26.0^{\circ}$
$\mu=0.40 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Needle, white
$0.24 \times 0.11 \times 0.09 \mathrm{~mm}$
Data collection
Bruker SMART APEX CCD diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
$T_{\text {min }}=0.948, T_{\text {max }}=0.964$
3729 measured reflections
Refinement
Refinement on F^{2}

> 1347 independent reflections 1183 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.027$ $\theta_{\max }=26.0^{\circ}$ $h=-23 \rightarrow 22$ $k=-9 \rightarrow 10$ $l=-10 \rightarrow 10$ $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0659 P)^{2}\right.$ $\quad+1.4244 P]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$ $(\Delta / \sigma)_{\max }<0.001$ $\Delta \rho_{\max }=0.50 \mathrm{e}^{-3}$ $\Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.119$
$S=1.06$
1507 reflections
93 parameters

H-atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (I).

$\mathrm{S} 1-\mathrm{C} 2$	$1.637(2)$	$\mathrm{N} 1-\mathrm{C} 3$	$1.380(3)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.318(2)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.391(3)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.220(2)$		
$\mathrm{C} 6-\mathrm{C} 4-\mathrm{C} 3$	$117.15(17)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$122.78(19)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{S} 1$	$164.72(16)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3-\mathrm{O} 2$	$5.8(3)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{~S}^{\mathrm{i}}$	0.95	2.76	$3.525(2)$	138
$\mathrm{C}^{\mathrm{i}}-\mathrm{H} 5 \cdots \mathrm{O}^{2 i}$	0.95	2.58	$3.068(2)$	113
$\mathrm{C}^{\mathrm{H}}-\mathrm{H} 5 \mathrm{O}^{2 i i}$	0.95	2.58	$3.068(2)$	113
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{2 i}$	0.88	2.08	$2.948(2)$	169

Symmetry codes: (i) $x, y+1, z$; (ii) $x,-y+1, z-\frac{1}{2}$; (iii) $-x,-y+1,-z+1$.

Polymorph (II)

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$
$M_{r}=312.36$
Triclinic, $P \overline{1}$
$a=6.303(13) \AA$
$b=7.7016(15) \AA$
$c=14.255(3) \AA$
$\alpha=92.496(3)^{\circ} \AA$
$\beta=9.952(3)^{\circ}$
$\gamma=103.496(3)^{\circ}$
$V=670.4(2) \AA^{\circ}$

Data collection

Bruker SMART APEX CCD

diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
$T_{\text {min }}=0.947, T_{\text {max }}=0.964$
6812 measured reflections

$Z=2$

$D_{x}=1.547 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2617 reflections
$\theta=2.7-26.0^{\circ}$
$\mu=0.41 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Needle, yellow
$0.24 \times 0.11 \times 0.09 \mathrm{~mm}$

2617 independent reflections
2308 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-7 \rightarrow 7$
$k=-9 \rightarrow 9$
$l=-17 \rightarrow 17$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.069$
$w R\left(F^{2}\right)=0.150$
$S=1.26$
2617 reflections
183 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0573 P)^{2} \\
&+1.1105 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.53 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.41 \mathrm{e}^{-3}
\end{aligned}
$$

Table 3
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (II).

S1-C2			
S2-C11	$1.634(4)$	$\mathrm{O} 3-\mathrm{C} 10$	$1.226(4)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.639(4)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.377(5)$
$\mathrm{O} 4-\mathrm{C} 11$	$1.343(4)$	$\mathrm{N} 1-\mathrm{C} 3$	$1.401(4)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.327(4)$	$\mathrm{N} 2-\mathrm{C} 10$	$1.372(4)$
	$1.212(4)$	$\mathrm{N} 2-\mathrm{C} 11$	$1.381(4)$
C5-C4-C3			
C6-C4-C3	$125.4(3)$	$\mathrm{C} 5-\mathrm{C} 9-\mathrm{C} 10$	$117.9(3)$
	$115.6(3)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$122.2(3)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{S} 1$			
$\mathrm{C} 10-\mathrm{N} 2-\mathrm{C} 11-\mathrm{S} 2$	$0.3(6)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3-\mathrm{O} 2$	$-8.4(6)$

Table 4
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\text {iv }}$	0.88	2.04	$2.913(4)$	169
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~S}^{\mathrm{v}}$	0.88	2.57	$3.421(3)$	163
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{v}}$	0.88	2.55	$2.949(4)$	108
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O}^{\text {iv }}$	0.95	2.32	$3.140(4)$	145

Symmetry codes: (iv) $-x,-y,-z+2$; (v) $-x+1,-y+1,-z+2$.
All H atoms were placed in geometrically calculated positions, with $\mathrm{C}-\mathrm{H}$ distances of 0.98 (for methyl) and $0.95 \AA$ (for phenyl), and were refined using a riding model, with $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}$ (parent) (for phenyl and N -bound H atoms) or $1.5 U_{\text {eq }}$ (parent) (for methyl H atoms).

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; structure
solution: SHELXS97 (Sheldrick, 1997); structure refinement: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: $X-S E E D$.

Financial support from the University of Stellenbosch, the NRF (GUN 2046827), THRIP (project 2921) and Anglo Platinum Ltd is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: RB1007). Services for accessing these data are described at the back of the journal.

References

Azizyan, L. V. \& Ryaboi, V. I. (1989). Obogashch. Rud (Leningrad), 2, 21.
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Blewett, G., Esterhuysen, C., Bredenkamp, M. W. \& Koch, K. R. (2004). Acta Cryst. C60, o862-o864.
Bourne, S. A., Hallale, O. \& Koch, K. R. (2005). Cryst. Growth Des. 5, 307-312.
Bruker (2001). SMART. Version 5.625. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2002). SAINT. Version 6.36a. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. (1997). Science, 278, 404-405.
Douglas, I. B. \& Dains, F. B. (1934). J. Am. Chem. Soc. 56, 719-721.
Hallale, O., Bourne, S. \& Koch, K. R. (2005). CrystEngComm, 7, 161-166.
Hoyer, E., Köhler, R., Kirmse, R., Richter, R., Sieler, J. \& Beyer, L. (1986). Z. Anorg. Allg. Chem. 537, 133.
Kirchner, M. T., Reddy, L. S., Desiraju, G. R., Jetti, R. K. R. \& Boese, R. (2004). Cryst. Growth Des. 4, 701-709.

Koch, K. R. (2001). Coord. Chem. Rev. 216-217, 473-488.
Koch, K. R., Bourne, S. A., Coetzee, A. \& Miller, J. (1999). J. Chem. Soc. Dalton Trans. pp. 3157-3161.
Koch, K. R., Hallale, O., Bourne, S. A., Miller, J. \& Bacsa, J. (2001). J. Mol. Struct. 561, 185-196.
Koch, K. R., Sacht, C. \& Bourne, S. (1995). Inorg. Chim. Acta, 232, 109-115.
Koch, K. R., Sacht, C., Grimmbacher, T. \& Bourne, S. (1995). S. Afr. J. Chem. 48, 71-77.
Köhler, R., Kirmse, R., Richter, R., Sieler, J. \& Hoyer, E. (1986). Z. Anorg. Allg. Chem. 537, 133.
Konev, V. A. \& Ryaboi, V. I. (1971). Obogashch. Rud (Leningrad), 16, 10.
König, K. H., Pletsch, H. J. \& Schuster, M. (1986). Z. Anal. Chem. 325, 621624.

König, K. H., Schuster, M., Schneeweis, G. \& Steinbrech, B. (1983). Z. Anal. Chem. 319, 66.
Montiel-Ortega, L. A., Rojas-Lima, S., Otazo-Sanchez, E. \& VillagómezIbarra, A. R. (2004). J. Chem. Crystallogr. 34, 89-93.
Morales, A. D., de Armas, H. N., Blaton, N. M., Peeters, O. M., De Ranter, C. J., Márquez, H. \& Hernández, R. P. (2000a). Acta Cryst. C56, 503-504.
Morales, A. D., de Armas, H. N., Blaton, N. M., Peeters, O. M., De Ranter, C. J., Márquez, H. \& Hernández, R. P. (2000b). Acta Cryst. C56, 1042-1043.
Morales, A. D., Garcia-Granda, S., Esteva, Y. R., Stevens, A. P. \& Crespo, G. A. A. (1997). Acta Cryst. C53, IUC9700019.

Oba, M. \& Nishiyama, K. (1994). Synthesis, pp. 624-627.
Ramadas, K., Srinivasan, N. \& Janarthanan, N. (1993). Tetrahedron Lett. 34, 6447-6450.
Richter, R., Sieler, J., Köhler, R., Hoyer, E., Beyer, L. \& Hansen, L. K. (1989). Z. Anorg. Allg. Chem. 578, 191-197.

Schröder, U., Beyer, L. \& Sieler, J. (2000). Inorg. Chem. Commun. 3, 630-633.
Shanmuga Sundara Raj, S., Puviarasan, K., Velmurugan, D., Jayanthi, G. \& Fun, H.-K. (1999). Acta Cryst. C55, 1318-1320.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2002). SADABS. Version 2.05. University of Göttingen, Germany.
Ugur, D., Flörke, U., Külcü, N. \& Arslan, H. (2003). Acta Cryst. E59, o1345o1346.

